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Fission barriers and fission paths of the "’Se nucleus within a microscopic approach
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The fission barriers as well as different fission paths of the 7Se nucleus have been microscopically investigated
within a constrained Skyrme-Hartree-Fock plus BCS approach using the SkM* effective interaction. The effects
of intrinsic reflection asymmetric deformations have been taken into account while axial symmetry around the
fission direction has been assumed. The two-body part of the center of mass correction has been included in
a perturbative way and has been found to weakly contribute to the calculated barrier heights. Upper limits of
the latter have been evaluated as the heights with respect to the ground state energy of the lowest saddle points
obtained along continuous paths in a reasonably dimensioned collective space connecting one-body shaped and
two-body shaped configurations. They have been found somewhat higher than what is expected from other

theoretical studies.
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I. INTRODUCTION

In a previous work [1] extensive calculations of fission
barriers in heavy nuclei have been performed within the
Skyrme-Hartree-Fock mean field approximation including
pairing correlations in the BCS approximation. Since this
approach has been proven to satisfactorily describe the
considered fission barrier heights, we have found it interesting
to extend such a study to the completely different region of
light nuclei, specifically here the "°Se isotope. As well known
(see, e.g., Ref. [2]), when the fissility parameter x decreases,
the saddle point shape becomes more and more necked in,
or in other words the scission point becomes closer to the
saddle point. Below the so-called Businaro—Gallone x-value,
one even finds that only conditional liquid drop fission barriers
exist for given fragmentations. The 7°Se nucleus having a
fissility parameter x = 0.33 (with (Z?/ A)erit = 50.13 [3]) does
qualify a priori for such an instability at the saddle point
with respect to reflexion asymmetric deformations. Moreover
it has been argued from semiclassical calculations (see [4])
that the large value of the curvature coefficient associated in
such a model approach with Skyrme effective forces should
yield fission barriers in light nuclei much too high. Assessing
the value of our approach in such a nuclear region is thus
the main motivation for the present study. Our choice of a
particular light nucleus has been naturally oriented towards the
70Se isotope since recent experimental data [5] are available
and some calculations have been already performed for that
nucleus [6,7].

II. THEORETICAL FRAMEWORK AND
CALCULATION PROCEDURE

As in Ref. [1] the Skyrme effective force, in its SkM*
parametrization [8], has been used. As is well known, it
has rather good surface properties which makes it well
suited for the description of very elongated nuclear shapes
as encountered during the fission process.
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The usual BCS formalism with a seniority force has been
implemented to treat the pairing correlations. The constant
matrix elements of the seniority force are given for the g-charge
state by G, = g, /(11 + N,) in MeV where N, is the number
of particles of charge ¢, g, = 17.1 MeV and g, = 16.5 MeV.
This parametrization has been taken from the calculations of
Ref. [9] dealing with the spectroscopic properties of nuclei in
the same region. The single particle states entering the BCS
equations are contained in the range ]—oo, A + 5] in MeV
(where A is the chemical potential) and their contribution is
weighted at the edges by a Fermi factor whose diffuseness
parameter has the value of 0.2 MeV. In all the calculations
presented here we have allowed for left-right asymmetrical
deformations, measured by the expectation value of the axial
octupole moment (Qs30) given, in spherical coordinates by

(O30) = / dr p(r)r* Y0, ¢), (1

[in what follows p(r) represents the mass, i.e., neutron plus
proton, distribution]. When the left-right symmetry is broken,
we have further assumed the axial symmetry along the z-axis.
When the left-right symmetry is imposed or borne out by the
potential energy surface, in some instances we have relaxed
the former axial symmetry. Both axial and nonaxial quadrupole
deformations are defined by the expectation values (on) and
(Q2) through

(02) = / dr p(r) (32> — 1) 2
(On) = / dr p(r) (x* — %), 3)

and for small deformations, they can be expressed in terms of
the Bohr parameters 8 and y [10] at first order in 8 as follows:

~ 5
(Qn) = ;A<r2>ﬂcosy, )
A 5 .
(On) = 3—A(r )Bsiny, 5)
T
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where (r?) is the averaged expectation value of the squared
radius:

1
) =~ / dr p()r’ . ©)
The inverse relations are therefore (at first order in §):

T V(020)2 + 3 (0n)?
5 A2) ’
V3{

:3=

)

tany = M (8)

(Q20)
Since our code gives rise to calculations with a basis rather
close to axial symmetry having Oz as a symmetry axis, the
relevant ranges for y are on the prolate and oblate sides,
respectively:

0<y <% (case 1), ©
T
T < y< 3 (case 2) (10)

B being always positive. Correspondingly, the axial and
nonaxial quadrupole moments (O20) and (Q2) are both,
respectively, positive and negative in the two above cases.
Nevertheless the y’-values traditionally displayed on figures
(see, e.g., our Fig. 2 where we have kept the notation y) are
defined by

y' =y (case 1), (11)

!

4
y =—-y+ Y (case 2), (12)
such that they range between 0 and 7 /3. Moreover one can note
that, in our code, x and y are interchangeable by construction
so that the sign of (O2) when constraining this moment is
irrelevant.

In order to calculate the fission barrier height, we have first
to determine the most relevant fission paths from the ground
state to scission configurations and beyond, with a particular
attention paid to the saddle points. In that respect we have to
find paths along which all the moments of the nuclear density
remain continuous functions of the elongation parameter
chosen here to be represented by the mass quadrupole moment
(O20). The barrier height is thus the energy of the lowest saddle
point relative to the ground state.

To better understand the transition between the one-body
shaped solutions around the “exit point” (defined in Sec. III B)
and those in the fission fragment valleys, one has to evaluate the
thickness of the “neck” of matter appearing between nascent
fragments. One possible way to do so is to compute the
hexadecapole moment in spherical coordinates by

(Qa0) = / dr p(0)r* Y6, ¢). (13)

One can alternatively make use of another global variable
previously introduced by Berger ef al. [11]:

(On) = f dr p(r) ¢” I, (14)

The width of the Gaussian « is chosen to be of the order of
the nucleon—nucleon interaction range (¢ = 1 fm here) and its
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center Zm;, is defined as the point on the fission axis where the
nuclear density reaches its lowest value between both (nascent)
fragments. For a two-body shaped system, (Qy) is vanishing
when the tip-distance between the soft edges is much larger
than the @ parameter. On the contrary, a one-body shaped
nucleus has a finite expectation value (Qn) which depends on
the compact character of the nucleus, mainly determined by
its elongation ({ 010)-value).

Since the pioneering work of Swiatecki [12], followed
by the microscopic-macroscopic calculations of Pashkevich
[13—16] and Moller [17-19] as well as the microscopic
HFB calculations of Berger and collaborators [11,20,21] and
some others [22-25], one knows that the potential energy
landscape describing the descent from saddle points to scission
points is rather complicated. Quite a number of collective
variables appear necessary to describe properly the minimal
topology able to reproduce some experimental data (as, e.g.,
the transition between and/or the coexistence of symmetrical
and asymmetrical components in the fragments mass yields
[26-29]). It is therefore of paramount importance to be
able to probe the energetic response of the nuclear system
to various deformation modes. In view of the enormous
numerical effort to exhaustively map the energy on a mesh
of all relevant collective variables [30], it is of practical
interest in microscopic calculations to perform cuts according
to various supplemental conditions like constraining one (or
more) collective variable to have a given value. This has
been very well illustrated in the seminal work of Berger and
collaborators [11,20,21] where the various relevant variables
and topologies have been sorted out.

To achieve this goal, in practice, one has to make sure that
solving the constrained variational problem one guarantees
with a sufficient accuracy that the requested condition(s) is
(are) met. Following techniques originated in this context by
the Bruyeres-le-Chatel group [31], we have developed, only
in the axially symmetric case, an algorithm which adjusts
iteratively the Lagrange multipliers A; to provide the requested
expectation values of the constraint operators Q;. This has
been done in close collaboration with Dr. Samscen (CENBG
Bordeaux). The idea consists of calculating the relevant §;
values from the differences §(Q ;) between the computed and
expected values at the first order of perturbation theory. This
implies the inversion of a matrix similar to the inertia matrix
in the Inglis cranking approximation.

In our codes, the single-particle HF wave functions have
been expanded onto the axially deformed harmonic oscillator
basis which has obviously to be truncated in practice. This
introduces, as is well known, spurious dependence upon the
basis parameters that has been carefully checked as outlined
in Ref. [1]. Namely we have optimized the basis parameters
all along the curve from the ground state to the exit point
at (Oa) ~ 44 barmns (b) and along the two fusion valleys
displayed in Fig. 3 (see next section for explanations). All
the results reported in this paper have been obtained with the
basis size parameter Ny = 12 (with the notation of Ref. [1]).

Our calculations as is well known, deal with solutions in
the intrinsic frame. Two types of approximate corrections are
considered here to tentatively cure the symmetry breaking
inherent to this situation. They concern the rotational and
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FIG. 1. Deformation energy curve of "°Se around the spherical
point.

translational invariances. Some consequences of these ap-
proximations (presented at length in various other places, see,
e.g. [1]) will be discussed below, particularly in Sec. IV.

III. RESULTS: FISSION PATHS AND BARRIER HEIGHTS

We first report on the results concerning the potential energy
surface. They aim at finding out the lowest relevant paths from
the ground state to some final states in which fragments are
well separated.

A. Around the ground state deformation

To find the lowest minimum, i.e., the ground state, we
have initiated the constrained Hartree-Fock iterative process
with a spherical Woods-Saxon single-particle potential and
a constraint on the elongation ( O») released after a few
iterations. This initial constraint acts as a perturbation taking
the nucleus away from the spherical shape and, once released,
enables us to find local minima in the vicinity of the spherical
point (this point being itself possibly included). Restricting
ourselves first to axially symmetrical shapes, we have obtained
two almost degenerate minima, namely one oblate at (On0) ~
—2.2 b and one prolate at (O20) =~ 1.5 b. The latter is found
to be about 150 keV higher than the oblate one while the
spherical barrier, from the prolate minimum to the spherical
point, is even smaller (see Fig. 1).

Using the expressions (4) and (5) the corresponding
B-values are, respectively, 8 ~ 0.15 (oblate) and 8 =~ 0.10
(prolate). A posteriori we see that these values are reasonably
small as to allow to truncate the expansion of (D) and (O27)
at first order in S.

Actually the imposition of axial symmetry leads, in that
case, to rather deceptive conclusions. As shown in Fig. 2
where various cuts of the potential energy surface in the (8, y)
usual sextant are shown, this nucleus is essentially a spherical
oscillator, on which a rather shallow gutter running from
B ~ 0.10 on the prolate side to B ~ 0.15 on the oblate side is
to be noted. It is worth noting that this feature is at variance
with those underlying some other theoretical approaches (see
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FIG. 2. Cuts in the (8, y) plane (note the very dilated scale of the
energy).

Refs. [32-34]) emphasizing an alleged prolate-oblate coex-
istence for this nucleus. The experimental spectrum (see,
e.g., Fig. 3 of Ref. [34]) does not allow us to confirm either
theoretical finding. One finds a rather nice vibrational pattern
for the sequence of first 0, 2%, 4% states [energy and B(E?2)
ratios close to 2]. However quasi-f and quasi-y band structure
might be present as well. Nevertheless, it is quite clear that
the consideration of any structure of the mass parameters in
conjunction with our rather flat energy surface might stabilize
the collective solution in a smaller deformation range. This
would be more consistent with the data. In this context, it is
interesting to note that, as it will be discussed later, including
the two-body part of the center of mass correction produces
also a perturbation of our potential energy surface yielding a
statically preferred prolate equilibrium shape.

B. “Ground state” ascending valley

At first, we discuss what we call the “ground state”
ascending valley (i.e., ascending upon increasing the Qs
operator expectation value). To describe this valley, we have
started from the prolate equilibrium (for purely axial shapes)
solution generating step by step self-consistent solutions
whose mass quadrupole moments differ by about 5 b on
average. In doing this, we allowed for a possible left-right
reflection (mirror) asymmetry but not for a violation of the
axial symmetry. As seen in Fig. 3, we have obtained a potential
energy curve monotonically increasing by about 50 MeV when
going from (O20) = 1.5bto (Oy) ~ 44 .

A necessary condition for considering the ensemble of such
solutions as forming a valley is that a collection of expectation
values of relevant collective operators appears to be smoothly
varying as function of the constrained quantity—here (Qa).
Of course, this is not a sufficient condition since one cannot
guarantee that the expectation value of some operator not
looked at in the present calculations would not exhibit wild
excursions out of a smooth path. This remark is valid for
all calculations of this type (along some cut in the collective
space as here or building up a mesh in a potential energy
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FIG. 3. Deformation energy curves of 7’Se obtained in the
conditions described in the text. The full line is the ground state
ascending valley (one-body shapes) whereas the discontinuous lines
denote two-body shapes: the dashed line corresponds to the *K+3'P
fragmentation, whereas the dotted one corresponds to the **Ni+!2C
fragmentation.

surface necessarily restricted to a limited number of collective
variables as, e.g., in Ref. [30]).

At least, one should make sure that the supposedly most
important modes are reasonably well described by the retained
operators. In our case, we have chosen three such operators,
one related to the mass asymmetry, namely O3, and the
two others related to the neck-formation modes Q4o and Q N-
Obviously the choice of these operators is not without prob-
lems, beyond the mere consideration of the limited number of
studied modes. Indeed, they neither are independent collective
variables nor unambiguously define a physical configuration.
By the latter, we do not mean that they are not univocally
defined in a mathematical sense (see the above discussion), but
rather that they cannot define in a pertinent way the whole span
of shapes going from one single spherical (or quasispherical
for that matter) nucleus to two separated deformed fragments.
The hexadecapole moment is of poor usefulness in the latter
case while (Qy) is hardly meaningful in the former case. This
is precisely why we have decided to consider systematically
both. The expectation values of ng, Q40, and Q ~ along the
ground state ascending valley are displayed in Fig. 4. They
all show, up to small kinks (consistently in the (O40) and
(On) curves) near (Q,0) = 12 b, rather smooth behaviors. The
corresponding sequence of shapes is displayed in Fig. 5. It is
worth noting that we have found around (on) =21 b some
octupole instability, as illustrated in Fig. 6.

Upon increasing the deformation from (Q»0) = 15 b for
instance, one experiences the apparition of a shallow valley
in the direction of increasing (ng) values near (on) =21b.
This pattern transforms itself in a shouldering of lesser and
lesser importance at higher and higher (On0) values, to almost
disappear near (Q) &~ 30 b. It is important to note that we
have found no evidence of a smooth connection between this
octupole instability region and the second descending valley
which will be discussed below and whose energy curve as a
function of Q) crosses the energy curve of the presently
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FIG. 4. Variation of the axial octupole, hexadecapole, and “neck”
moments as functions of the elongation (o) along the ground state
ascending valley (see text for definition).

studied ascending ground state valley at almost the same
quadrupole deformation—namely (on) =26.5D.

At (O20) ~ 44 b, which corresponds to the so-called “exit
point,” the ground state ascending valley terminates, as will be
discussed in the next subsection. This means, in practice, that
at such quadrupole moment values and at larger ones, we did
not find any stable symmetrical equilibrium solutions whose
collective moment values would be smoothly connected with
those obtained at lesser elongations.

As mentioned above, we have assumed axially symmetric
shapes all along the different studied paths. This has been
tested in one point belonging to the ground state ascending
valley by making a cut in the (Q2,) direction. More precisely,
slightly before (upon deforming away from the ground state)
the intersection point of the ground state ascending path and
the lowest descending valley (discussed in Sec. III D below),
that is at (o) = 26 b, we have checked that our axial solution
({O) = 0, thus y = 0) is stable against triaxial deformations
(see Fig. 7). In terms of the (B, y) parameters, it corresponds
to a section in the y direction from 0° to 4° at a fixed S-value,
namely 8 = 1.1.

C. Around the exit point

When approaching (Qa)-values of the order of 40 b,
the symmetrical solution! corresponding to the ground state
ascending valley becomes less and less stable against defor-
mations narrowing the neck region ( O ) deformations). This
can be seen in Fig. 8 where the deformation energy has been
plotted as a function of the expectation value of the neck
operator O for different fixed (Q20)-values from 38 to 50 b.

These sections of the potential energy surface in the (Qy)
direction have been obtained in the following way. At a given
(O20)-value, we have started from the (Qy)-value (typically
between 4 and 5) associated with the solution in the so-called
ground state ascending valley (which has been found to be

'In what follows, “symmetrical” or “asymmetrical” will refer to the
left-right reflexion symmetry.
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FIG. 5. Nuclear density contours at different (On0)-values along
the ground state ascending valley.

symmetrical, see Fig. 6). Then, we have varied the constraint
on (Q ~) for both larger and smaller values so as to describe
the corresponding deformation energy curve. This leads to the
full lines in Fig. 8. It appears that the (symmetrical) solution
lying in the ground state ascending valley and corresponding
to the minimum around (Q ~) =15 of the (Q N )-sections is
stable for (Qa)-values lower than or equal to 44 b. This
minimum becomes less and less pronounced when increasing
(O20) and tends to disappear around 44 b, where it ends up by
exhibiting a very shallow pattern, close to a mere “shoulder.”
That is precisely what characterizes an exit point, referred
to as the “symmetrical exit point” in the following since the
corresponding octupole moment is equal to zero.
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FIG. 6. Sections in the (Q3) direction for four (Q,)-values
around the octupole instability observed at ((Q,) &~ 21 b along the
ground state ascending valley.

At very low—close to zero—(Q y)-values, a second min-
imum develops in the curves of Fig. 8 starting from (Q50) &
39b upon increasing the elongation. The corresponding
solution is two-body shaped and slightly asymmetric. At all
elongations considered here it corresponds to the *K+43'P
fragmentation. The set of such minima at various elongations
forms what is called here the **K+4>'P descending valley
(dashed line of Fig. 3) and will be discussed in greater details
in the Sec. III D. Such a coexistence at a given (O0)-value
of ascending and descending valleys, generally separated by
a ridge, has already been found in similar calculations (see,

E 4e(MeV)
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-564 | I I I I
0 80 100 120
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FIG. 7. Section of the potential energy surface at () = 26 b
in the (Q»,) direction.
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FIG. 9. Sections in the (Qs) direction at (Q) = 40b and
(Q2) = 46D.

e.g., Ref. [11] and the Figs. 24 of Ref. [22]). One can
also remark that the minima associated with the one-body
shaped solution (corresponding to the ground state ascending
valley) and the above two-body shaped solution coexist for
elongations contained between (020) =39 band (Qy) = 44
b, and that, for (Q») = 42 b, they have approximately the
same energy. Figure 8 displays a very typical pattern of shape
transition in an isotopic series (observed long ago in calcu-
lations of shape coexistence/transition in deformed nuclei). It
has been first illustrated in the context of fission/fusion of two
nuclei, see Fig. 3 of Ref. [11].

In addition, as it can be seen, e.g., in Fig. 9, displaying
the deformation energy as a function of the expectation value
of O at two different fixed <Q20>—Values—namely 40 b and
46 b—an asymmetrical solution has also been found. Then we
have made a cut in the (Q ~) direction at the same elongations
as above mentionned but starting from this asymmetrical
solution. We have thus obtained the dashed curves of Fig. 8. It is
interesting to notice that, whereas the symmetrical ground state
ascending valley ends around (Q50) = 44 b, the asymmetrical
solution remains stable against neck deformations up to
(O20) = 50 b at least, where the minimum is still rather well
pronounced (being approximately 1 MeV deep).

All along the above-discussed sections of the energy surface
in the (Qy) direction, it has been checked that the (axial)
octupole and hexadecapole moments corresponding to the
symmetrical solution (full lines) with ( Q) ranging from 38 to
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FIG. 10. Variation of the expectation values of the axial octupole
and hexadecapole moments along the sections in the (Qy) direction
at various (Q»)-values around the exit point. They are expressed in
b%? and b2, respectively.

44 b vary smoothly with (Q ) as can be seen in Fig. 10. It is
remarkable that (Q40) turns out to vary almost linearly with
(On), which shows that these deformation coordinates may
be considered as being redundant. As far as the asymmetrical
solution is concerned (dashed lines), the expectation value of
Q30 appears to remain constant and equal to about 2 b*/? for
(On)-values around 5 (see Fig. 10). Upon making a cut in
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FIG. 11. Sections of the potentiel energy surface in the (Q3)
direction at three different (O y)-values (3, 5, and 7) and at the same
elongation (On0) =46 1.

the (Qso) direction at (Qy) = 5 with (Qy) fixed to 46 b for
example (see Fig. 11), we have found indeed a minimum at
a finite (O3)-value of about 2 b¥2. As one goes away from
this (Qy) region one gets symmetrical equilibrium solutions
(i.e. (Q30) = 0), which is consistent with the existence of
a symmetrical minimum along the sections of Fig. 11 at
(On) =3 as well as (Qy) = 7. In addition, one may note
the appearance of a second minimum at a finite (O30)-value
of about 4.5 3/2 for the cut at (Qy) = 3 (see Fig. 11). Even
though, as already mentioned, (Q40) varies almost linearly
with respect to (Q ~), it exhibits, however, a kink around the
(On)-value where (Qs) vanishes (see the right column of
Fig. 10).

As an example, a sequence of nuclear shapes is displayed in
Fig. 12 showing that, starting from the symmetrical minimum
at (Ox) = 44 b—where (Qy) = 4.4—the nucleus smoothly
acquires a left-right asymmetric deformation yielding the mass
asymmetric ¥ K+3'P fragmentation.

Assuming that the 7Se nucleus adiabatically follows the
ascending valley from its ground state up to the exit point,
we can consider that the height of the latter relative to the
ground state provides an upper limit of the conditional fission
barrier height connecting the ground state to the ¥ K43P exit
channel. Specifically, we have taken as a saddle point the local
maximum at (Q ) ~ 1.6 along the energy curve computed at
(O2) =44 b in Fig. 8. It lies 51.5 MeV above the (oblate)
ground state. The comparison with experimental data will be
presented in the last section after having taken into account
the rotational correction as well as the two-body contribution
to the center of mass correction.

D. Descending valleys

As discussed in the previous subsection (Sec. III C),
a two-body shaped solution corresponding to a °K+43'P
configuration is found at very low (Qy)-values (of the order
of 0.3) for <Q20> =39 b and larger elongations. We have
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FIG. 12. Sequence of nuclear shapes along the section in the (O )
direction at (Q,y) = 44 b starting from the symmetrical one-body
solution.

determined the deformation energy curve associated with this
fragmentation as a function of (Qs), in particular the entry
point in this valley, that is the lowest (Q20)-value at which this
solution is stable against (On) deformations. We have thus
obtained the dashed curve displayed in Fig. 3 which is reported

as a full line in Fig. 13. Along these curves, the energy is a
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FIG. 13. Deformation energy curve as a function of (D)
corresponding to the ¥K4-*'P fragmentation (full line). The sum
of the mutual Coulomb energy Eor within the approximation of
two well-separated spherical fragments Eq. (17) and a fitted constant

(see the text) has been displayed as a dotted line.

decreasing function of (00). Asymptotically it should behave

like the mutual Coulomb energy ES™™

Coul *
That is why we have also plotted EorY—within an

approximation discussed below—to which a constant energy
term has been added and fitted so that the so-obtained total
energy is as close as possible to the actual deformation energy
E4.¢. Since we are only interested, here, in the behavior of E et
as a function of (Q1), we will not discuss the constant term.
To calculate the mutual Coulomb energy, we have taken stock
on the fact that the two fragments are well separated. Then
the expectation value of the axial mass quadrupole moment
(O20) of the whole fissioning system is related to the intrinsic
elongation of the fragments defined with an obvious notation
by (020)® (i = 1, 2), according to the following expression:

A A Ay

(020) = (Q20)" + (020)® +2 D?

Al + A2 c.m.”’
where D., is the center of mass distance. As can be
seen in Fig. 14, the fragment elongations are found to be
rapidly decreasing to almost vanishing values. Since they are
negligible with respect to D?_, we are thus left with

Ay Ay
A+ Ay
Consequently, for almost spherical fragments, the following

expression holds for the mutual Coulomb energy between both
fragments:

s)

(Q20) ~ 2 D2, (16)

E(mm) ~ Zl 22 62 ~ 2A1 A2 Zl Zz 62
el Dem. A+ A (0n)

This is the energy—to within a constant term—plotted as a
(mut)

dotted line in Fig. 13. As expected, E 4.t does behave like E
asymptotically and varies like (Q2)~'/2. Nevertheless, as the
elongation nears its value at the entry point of the descending

39K +31P valley, the deformation energy curve slightly departs

a7
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0.15
_____ <on>(heavy) (b)
01} & o QM (b)
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(Qy (b)

FIG. 14. Expectation values of the mass quadrupole moments
of the heavy fragment (dashed line) and the light one (dotted
line) expressed in barns as functions of ((Qa) for the **K+3'P
fragmentation.

from the pure Coulombian trend. The above approximation
of well-separated fragments becomes therefore less and less
valid. Indeed at this elongation, the “tip distance”—measuring
the closest distance between the fragments edges, defined at
half the saturation density—amounts to 3 fm approximately,
so that the nuclear interaction between nucleons in different
fragments begins to play a role.

Let us now focus our interest on another characteristic
feature of the ¥K+3'P fragmentation. The heavy fragment
(chosen to be the left one since we consider positive (O30)-
values) turns out to have a magic neutron number N = 20
and an almost magic proton number Z = 19 ~ 20, making it
very close to the doubly magic *°Ca nucleus. Thus this mass
division is clearly driven by shell effects in the heavy fragment.
This explains why the fragments are almost spherical (see
Fig. 14). We can therefore expect that other fragmentations
should be favored by the shell effects in at least one fragment,
which should lead to local minima in a section of the potential
energy surface, for example, in the {Aygp) direction (i.e., the
expectation value of the nucleon number in the right fragment).
That is precisely what we have done upon imposing the
elongation at (Q»0) = 45 b for instance. We have then obtained
the curve displayed in Fig. 15.

Four local minima have been found for the mass of the light
fragment, corresponding to different mass divisions of the *Se
nucleus, namely:

(1) (Ajign) = 12: ¥Ni+'2C fragmentation;

(2) (Ajign) = 16: 3*Fe+'°0 fragmentation (the correspond-
ing local minimum appears merely as a shoulder at the
energy scale of Fig. 15);

(3) (Ajignt) = 31: *’K+3'P fragmentation (see the preceding
discussion);

4) (Ajign) = 35: B3l fragmentation (symmetric fis-
sion, associated with a rather shallow minimum).

The three above-mentioned first divisions are clearly driven
by shell effects in one of the two fragments. In the first two
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FIG. 15. Section of the potential energy surface at (Ox) =45b
along the (A ) direction.

cases one fragment is indeed doubly magic or very close to a
doubly magic nucleus:

(1) the Ni heavy fragment has a magic proton number Z =
28 and almost a magic neutron number N = 30 =~ 28;

(2) the 'O light fragment is doubly magic whereas the heavy
one (°*Fe) has a magic neutron number N = 28;

The case of the K 4-3!P fragmentation has already been
discussed. Itis interesting to bear in mind that the product of the
two fragments charges (Zjignt){Zheavy), driving the Coulomb
energy scale, decreases with the mass asymmetry. This can
explain the increasing energy of the four above-mentioned
fragmentions going from (Ajgn) = 12 to (Ajign) = 35 at the
same (Qa0)-value. It is, indeed, related to the fact that, as
already noted, the 7°Se has a x = 0.33 fissility parameter. It
lies therefore slightly below the usually considered Businaro-
Gallone point (x & 0.35). In this mass region, the liquid
drop (nonquantum) effects dominate with respect to the shell
effects whereas one observes the contrary in the actinides and
beyond.

We have studied in particular the energy of the > Ni+'2C so-
lution as a function of the elongation ( Qo). The corresponding
deformation energy curve has been displayed as a dotted line
in Fig. 3 and as a full line in the upper panel of Fig. 16. As can
be noticed this curve does not follow the expected Coulombian
trend—whatever the value of the constant term added to E (Cn;ﬁ)
However, when performing the same calculations without any
center of mass correction, one obtains the dotted curve in the
lower panel of Fig. 16 and a better agreement is found for the
lower (Q50)-values. For larger elongations, the discrepancy
between the deformation energy and the Coulombian trend
increases with (Q2).

These two facts might be explained as such. Upon increas-
ing the global elongation and keeping the same number of basis
states, one makes the (one center) harmonic oscillator basis
less and less suited for the description of two well-separated
nuclei. This is seen, for instance, on the larger deformation
part of the Ey4¢ curve in Fig. 16, showing thus a bigger
and bigger lack of binding from the expected behavior as
the deformation increases. On the other hand, even at the
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D, (fm)
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-560 ‘ ‘ | |
E et (MeV)
562 -
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FIG. 16. Deformation energy curve as a function of (Da0)
corresponding to the 3¥Ni+!2C fragmentation with (upper panel) and
without (lower panel) center of mass correction. The sum of the
mutual Coulomb energy in the approximation of two well separated
spherical fragments Eq. (17) and a fitted constant (see the text for
explanation) has been displayed as a dashed line in both cases.

lowest deformations considered in this descending valley, the
center of mass correction, tailored for the compound 70Ge
nucleus, has a priori no reasons to be suited to the description
of two separated lighter nuclei. This is demonstrated in the
lower part of Fig. 16 where a self-consistent model calculation
without any center of mass corrections restores the expected
1/r behavior of the deformation energy curve before being
polluted by the above-mentioned single well basis problem.
Since the center of mass correction scales as 1/A, it is
not surprising to find that this effect is more apparent in
the ®Ni4!2C case (Fig. 16) than in the *K+43'P case
(Fig. 13). Indeed in the former case a very light nucleus ('>C) is
involved.

In Sec. III C we have investigated the region of the so-
called exit point to define a continuous path from the ground
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FIG. 17. Section of the potential energy surface at (Qa) =
26.5 b along the (Q30) direction.

state ascending valley to the ¥K+3'P descending valley. In
order to find an upper limit of the conditional fission barrier
height associated with the *Ni+!?C fragmentation, we have
also sought here such a continuous path. For the purpose of
this study, we have chosen to make a section in the potential
energy surface in the (Q3) direction, at the elongation for
which the solutions belonging to the ascending and descending
valleys have equal energies, namely at (Q,0) = 26.5b. We
have then obtained the deformation energy curve plotted in
Fig. 17.

As can be seen in Fig. 18, the expectation values of
the axial hexadecapole moment (O4) and of the neck
operator (Q ~) vary continuously as functions of (Q3O), (Q N)
experiencing however a rapid decrease around (Qs3) = 4 b*/?
corresponding to the neck rupture.

Thus, the difference between the maximal value of the
energy for (Q30) = 5 b*/? (see Fig. 17) along this path and
the (oblate) ground state energy gives an upper limit for the
conditional barrier height between the ground state and the
38Ni+!2C exit channel. It amounts to about 40.9 MeV (before
corrections discussed in the next section).

10

8 LT <Q4o>(b2)

o .

4

21 Q)

% 2 4 6 8 0
(Qgp)(b*?)

FIG. 18. Variation of (Q4) (full line) and (Qy) (dashed line)
along the section of the potential energy surface in the {Q30) direction
displayed in Fig. 17.
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IV. ROTATIONAL AND CENTER OF MASS
CORRECTIONS, CONDITIONAL BARRIERS

Let us discuss now the approximations made to restore the
rotational and translational symmetries broken by our mean
field microscopic approach.

As in Ref. [1] the rotation symmetry has been approx-
imately restored in the energy calculation upon applying a
correction 8 Ero; = (J?) /2Z. There the expectation value of
the total angular momentum squared (including the one-body
and two-body parts) has been computed for the relevant
BCS solution. Correspondingly the moment of inertia 7
has been evaluated for the same wave function within the
Inglis—Belyaev [35] approximation corrected as in [1] for
the self-consistent Thouless—Valatin terms [36]. The effect
of such a rotational symmetry restoration on the conditional
fission barrier height B;(°®*Ni) separating the ground state
from the ®Ni+!2C final state is given by the difference
between the values of the correction energy 6 E. calculated
for the maximum along the continuous section of Fig. 17
((Q20) = 26.5 b), and the (oblate) ground state ((Qa) =
—2b). We have then found, respectively, 6.5 and 2.7 MeV. As
noted previously [1] this corrective energy is increasing with
(O20). From the above values one infers that our corresponding
fission barrier may be considered as being overestimated by
about 3.8 MeV. As far as the barrier height B(*K) separating
the ground state from the 3°K+4->'P exit channel is concerned,
the effect of the rotational correction is calculated by the
difference of the corresponding é E. energies at the exit point,
where we have obtained § E;o; = 6.8 MeV, and at the ground
state. The corresponding fission barrier is thus lowered by
about 4.1 MeV.

The second correction is related to the breaking of the
center of mass translational invariance. This has been taken
care of as in [1] by correcting its kinetic part, in the variational
energy, through a mere substraction of the one-body part of
the center of mass kinetic energy. As thoroughly analyzed
in Ref. [37] such an approximation is not free from some
ambiguities:

(1) arbitrariness of throwing away a part of the energy which
has to be considered (which, as it appears, partly cancel
the one which is retained here);

(2) source of a systematic error due to a possibly different
deformation dependence of the one-body and two-body
parts of the energy;

(3) further ambiguities in deciding whether some or all of the
p-dependence of the (P?)/2m A energy should or should
not be considered in the functional derivatives yielding
the Hartree—Fock equations [37].

Here, we have limited ourselves to the self-consistent
one-body part of the center of mass correction energy. This was
motivated, beyond the numerical simplicity arguments, by the
fact that the SkM* force parameters have been fitted within this
framework. However we have performed some perturbative
calculations to yield a qualitative hint of what could be the
effect of such a crude approximation on the fission barrier
heights. Since the traditional way to treat the center of mass
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FIG. 19. Two-body contribution to the center of mass kinetic
energy along the ground state ascending valley.

correction breaks down when dealing with two well-separated
fragments (as above discussed at length in the *Ni+'2C case),
we have restricted ourselves to one-cluster shapes, that is
close to the ground state ascending valley. The top of the
two considered mass-asymmetric fission barriers corresponds
to such a shape, before the neck rupture (corresponding to a
value of (O y) of about 2 for the upper descending valley and
about 3 for the lower one). We can thus have a reasonable
confidence in the above-mentioned perturbative calculations
of the two-body contribution to the center of mass correction
around the exit point and the saddle point of the 3¥Ni+'2C exit
channel.

As can be seen in Fig. 19 showing the variation of the
two-body part E. ,, of the center of mass kinetic energy as
a function of (Q20) along the ascending valley, E. ., slightly
increases along this valley. It is found to decrease the height of
the exit point relatively to the ground state by about 2.7 MeV
and to lower the saddle point along the path down to the
38Ni4!2C exit channel by 2.4 MeV.

As a result, taking the rotational and two-body center
of mass corrections into account, the conditional fission
barrier heights which we finally obtain amount to B;(**Ni) =
34.7 MeV and B;(¥K) = 44.9 MeV.

These values can now be compared with the available
experimental data, obtained by Fan and collaborators [5].
More precisely we have considered the mass-asymmetric
fission barriers By extracted from “individual” fittings of
the excitation functions with a transition state formalism and
appearing in Table IV of Ref. [5]. Our fission barrier height
for the 3¥Ni+!2C exit channel should be compared with Bg =
25.28 MeV, whose overall uncertainty is estimated to amount
to 3%, that is 0.8 MeV. Our B f(SgNi)—Value overestimates
therefore the experimental value by about 9.4 MeV. In the
case of the ¥K+3'P fragmentation, the experimental value
By5s =35.09 MeV—with the same relative uncertainty—is
about 9.8 MeV lower than our B f(39K)-value. Some other
conditional barriers have also been deduced in Ref. [5] as
resulting from a global fit (i.e., a fit involving most of the
studied fragmentations). These global values turn out to be
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very close to those given by the individual fitting procedure,
but since they were not reported in the 3¥Ni+!2C case, we have
not considered them here.

The discrepancies between our barrier values and the
data correspond roughly to an overestimation of about 1/3.
It is however interesting to note that the difference be-
tween Bjs and Bg, namely Bis — Bg = 9.8 MeV, is quite
well reproduced since our calculations give correspondingly
Bf(39K) — Bf(SSNi) = 10.2 MeV. Furthermore, to put the
above-mentioned overestimation in the proper perspective, one
should first bear in mind that we have only given here upper
limits for the fission barrier heights. It is also worth recalling
that it was before this work commonly thought that our results
should vastly overestimate the experimental barrier heights on
the basis of a semiclassical estimate of the curvature liquid
drop energy based on the leptodermous approximation for the
density [4]. It is hard to disentangle, in such an appraisal,
the deficiencies of the effective force parametrizations and the
limits of the density modelization. Our results might rather
indicate that the leptodermous approximation could be not
really adapted for nuclei as light as Se. An additional reason
for this might be, as we have seen, that the scission points
for such a light compound nucleus are very close to the
saddle points. Indeed, one deals here with fission barriers
corresponding to somewhat well-marked neck formations,
which are clearly not expected to be well represented within
the leptodermous expansion.

To close this section, it is worth mentioning the theoretical
work of two groups of authors, namely Royer and Zbiri using
the generalized liquid drop model on the one hand [6], Méller,
Sierk, and Iwamoto using the macroscopic-microscopic model
on the other hand [7]. These authors have reported calculations
of conditional macroscopic fission barrier heights of 7°Se
(only in the symmetric case for the second group). In both
approaches the microscopic correction (including shell and
pairing effects) remains of course to be properly added. In
order to compare their experimental Bz-values with the two
above sets of calculated barrier heights, the authors of Ref. [5]
have therefore substracted to B, the microscopic correction
calculated in the ground state of "°Se by Mbller et al. [38].
The resulting values (quoted as “exp.”) are displayed in
Table I together with the barrier heights calculated by Royer
et al. [6] and Mdller et al. [7]. In principle, the macroscopic
fission barrier height B'*™ should be calculated by sub-
stracting the microscopic correction at the saddle point on
the fission path leading to a given Z-value for the charge of the
light fragment. The macroscopic barrier height B indeed

TABLE I. Conditional macroscopic fission barriers for the 7Se
nucleus extracted from experimental data [5] (after correction for
microscopic effects) and calculated within two different approaches
by Royer et al. [6] and Moller et al. [7].

Ziight Exp. Royer et al. Moller et al.
6 29.5 34.5 -

15 39.3 40.5 -

17 394 40.6 37.6
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writes, in the notations of Ref. [38]:

B = B, + ESY — ES7) (18)
where Eii)p is the shell-plus-pairing correction evaluated for
the microscopic solution corresponding to the deformation
noted here generically by €. In the experimental reference [5]
the energy Eifgd'z) has been neglected. This produces a
systematic error in the resulting B'*“°-values. In the absence
of any definite calculations of these shell and pairing effects
in the macroscopic-microscopic approach of Refs. [6,7] at the
saddle points, we can at best formulate the conjecture that the
systematic error of the so-called “experimental values” is of
the order of a couple of MeV.

V. CONCLUSIONS AND PERSPECTIVES

Conditional fission barrier heights of the "°Se nucleus,
which lies below the Businaro—Gallone point, have been
calculated in the microscopic Hartree-Fock—BCS approach
(using the SkM* parametrization of the Skyrme effective force
and a seniority force for the pairing residual interaction)
in the cases of two asymmetric divisions: **Ni+'?>C and
39K+4-3P. They have appeared to be locally stable due to shell
effects in at least one of the fragments. The obtained fission
barriers overestimate the available data by about 10 MeV.
This result however may be deemed as an encouraging one
in two accounts. Indeed the barrier heights were expected
much higher since some studies based on approximations of
mean field semiclassical approaches—including some using
the SkM* Skyrme force—have lead to a much too high
curvature-energy value a. as compared to the value obtained
from fits of experimental fission barrier heights and ground
state masses. Moreover, one should be reminded that our
calculated barrier heights are upper limits since the whole
deformation space has not been systematically explored. In this
respect, the present study has also underlined the complexity
of the potential energy surface of light nuclei, due to the
proximity of the scission point from the saddle point, contrarily
to the situation prevailing in actinide or heavier nuclei. A
more appropriate description of this surface implies a global
scanning of the deformation space built up with a relevant
number of well-chosen deformation coordinates. The correct
localization of physical saddle points can then be done, e.g.,
by implementing a water immersion method as the one used
in five dimensions by Moller (see for example Ref. [7] for a
description of the method and Refs. [12—14] quoted therein)
and recently extended to surfaces of any dimension by one of
us (L.B.) in collaboration with Mdller.
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